skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hall, Marissa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Estuarine submerged aquatic vegetation (SAV) provides vital habitat for macroinvertebrate communities that support diverse food webs and subsequent ecosystem services. Invasive SAV, however, has the potential to alter estuarine food webs through competition with native SAV, resulting in different associated biological communities. In the Mobile-Tensaw Delta (Alabama, USA), the invasive Eurasian milfoil, Myriophyllum spicatum, is fast becoming the dominant SAV, out-competing native SAV such as wild celery, Vallisneria americana. This study investigated the above- and belowground macroinvertebrate assemblages associated with these SAV habitats. We found significantly different assemblages between the SAV, with V. americana supporting more even and diverse epifaunal assemblages, and M. spicatum supporting greater total abundances of macroinvertebrates. Gammarid amphipods were more than 11 times more abundant in M. spicatum, while Polychaete species were threefold more abundant in V. americana. Our results suggest that V. americana may support a more diverse and even community compared to M. spicatum. If so, the continued decline in coverage of native V. americana and invasion of M. spicatum across the Mobile-Tensaw Delta could have system-wide ecological consequences. 
    more » « less